
Variable Precision Floating Point Division and Square Root

Miriam Leeser, Xiaojun Wang
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA 02115
mel,xjwang@ece.neu.edu

Division and square root are important operations in many high performance signal processing ap-
plications including matrix inversion, vector normalization, least squares lattice filters and Cholesky
decomposition. We have implemented floating point division and square root designs for our VHDL
variable precision floating point library. These designs are implemented in VHDL and are designed
to make efficient use of FPGA hardware.

Both the division [1] and square root [2] algorithms are based on table lookup and Taylor series
expansion. These algorithms are particularly well-suited for implementation on an FPGA with
embedded RAM and embedded multipliers such as the Altera Stratic and Xilinx Virtex2 devices.
The division and square root components have been incorporated into the framework of our variable
precision floating-point library.

1 Variable Precision Floating-Point Library

Our parameterized floating-point library is composed of three parts: format control, arithmetic op-
erations, and format conversion. Format control includes modules denorm and rnd norm. The first
is used for denormalizing (introduction of the implied one bit) and the second is used for rounding
and normalizing. Format conversion includes modules fix2float and float2fix. The first is used
for converting from fixed-point representation (both unsigned and signed) to floating-point repre-
sentation and the second converts in the other direction. Arithmetic operations include modules
fp add, fp sub and fp mul for floating-point addition, subtraction and multiplication respectively.
We recently added floating-point division (fp div) and floating-point square root (fp sqrt). For
both floating-point division and square root, we use the small table-lookup method with small mul-
tipliers [1, 2]. These algorithms are both small and elegant. Our result shows that these algorithms
are very well suited to FPGA implementations, and lead to a good tradeoff of area and latency.
Some features of our library are:

• Our parameterized floating-point library is a superset of all the previously published floating-
point formats including IEEE standard format.

• Our library is flexible. It supports the creation of custom format floating-point datapaths, as
well as hybrid fixed and floating-point implementations.

• Our library is more complete than all other earlier work with a separate normalization unit,
rounding with support for both “round to zero” and “round to nearest”, and some error
handling features.

• Each component in our library has synchronization signals to aid in the creation of pipelines.

2 Division and Square Root

The division and square root we built are based on previously published algorithms [1, 2]. Both of
these algorithms are based on Taylor Series and use both small table-lookups and small multipliers
to obtain the first few terms of the Taylor Series. These algorithms are both simple and elegant,
and very well suited to FPGA implementations. They are also non-iterative algorithms, unlike
other implementations of division and square root based on Newton-Raphson. This allows these
components to be easily integrated into a larger pipelined design built with other library modules
without decreasing the throughput of the whole design.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Variable Precision Floating Point Division and Square Root

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical and Computer Engineering Northeastern
University, Boston, MA 02115

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table 1: Cost and Performance for Floating-Point Division
Floating Point Format 8(2,5) 16(4,11) 24(6,17) 32(8,23)

number of slices 69 (1%) 110 (1%) 254 (1%) 335 (2%)
number of BlockRAM 1 (1%) 1 (1%) 1 (1%) 7 (7%)

number of 18x18 embedded multiplier 2 (2%) 2 (2%) 8 (8%) 8 (8%)
clock period (ns) 8 10 9 9

maximum frequency (MHz) 124 96 108 110
number of clock cycles to generate final results 10 10 14 14
latency(ns) = clock × number of clock cycles 80 105 129 127

throughput (million results per second) 124 96 108 110

Table 1 shows the cost and performance of four different floating-point formats (including IEEE
single precision format) for division. Results for square root are similar. All our designs are specified
in VHDL and mapped to Xilinx Virtex-II XC2v3000-4 FPGA. All area and timing results in the
above tables are those reported by the Xilinx tools. Our results show that both the area and the
latency of our floating-point division and square root implementations are small. For IEEE single
precision format division, it takes 14 clock cycles to generate final results with a 9ns clock period,
so the latency is only 127ns. Since it can be fully pipelined, the throughput is high at 110 million
results per second. This design takes only 2% of the slices, 7% of the BlockRAMs, and 8% of the
18x18 embedded multipliers on the FPGA chip, which is a very small design. Our floating-point
square root shows the similar good tradeoff of area, latency and throughput.

To demonstrate the division implementation, we are incorporating it into our implementation of
the K-means clustering algorithm applied to multispectral satellite images [3] K-means clustering is
an iterative algorithm where the total number of clusters is known in advance. The algorithm works
as follows. First means are initialized using a hierarchical method. During each iteration, each pixel
of the image is assigned to the closest cluster based on the distance between each pixel and each of
the K cluster centers. At the end of one iteration, the new mean of each cluster is calculated based
on the new pixel assignments and is used for the next iteration as the center of each cluster. To
obtain the new mean of each cluster, an accumulator and a counter are associated with each cluster.
Once a pixel is assigned to a cluster, the value of the pixel is added to the accumulator and the
counter is incremented. The new mean is obtained by dividing the accumulator value by the counter
value. In our previous design [3] this mean updating step is done on the host because it requires
floating-point division. With our new fp div module, we are able to implement the mean updating
in FPGA hardware. This greatly reduces the communication between host and FPGA board and
further accelerates the runtime.

References

[1] P. Hung, H. Fahmy, O. Mencer, and M. J. Flynn, “Fast division algorithm with a small lookup ta-
ble,” in Asilomar Conference on Signals,Systems and Computers, vol. 2, pp. 1465–1468, Novem-
ber 1999.

[2] M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand, “Reciprocation, square root, inverse
square root, and some elementary functions using small multipliers,” IEEE Transactions on
Computers, vol. 49, pp. 628–637, July 2000.

[3] P. Belanovic and M. Leeser, “A library of parameterized modules for floating-point arithmetic
and their use,” in High Performance Embedded Computing, September 2002.

2

Variable Precision Floating Point
Division and Square Root

Albert Conti

Xiaojun Wang

Dr. Miriam Leeser
Rapid Prototyping Laboratory

Northeastern University, Boston MA

http://www.ece.neu.edu/groups/rpl/

HPEC - Sept 2004 Northeastern University2

Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for
multispectral satellite images using the
floating point library

� Conclusions and future work

HPEC - Sept 2004 Northeastern University3

Variable Precision Floating Point
Library

� A library of fully pipelined and parameterized floating
point modules

� Implementations well suited for state of the art
FPGAs

– Xilinx Virtex II FPGAs and Altera Stratix devices
– Embedded Multipliers and Block RAM

� Signal/image processing algorithms accelerated
using this library

HPEC - Sept 2004 Northeastern University4

Why Floating Point (FP) ?

Fixed Point

� Limited range
� Number of bits grows

for more accurate
results

� Easy to implement in
hardware

Floating Point

� Dynamic range
� Accurate results
� More complex and

higher cost to
implement in hardware

HPEC - Sept 2004 Northeastern University5

Floating Point Representation

+/- e+bias f

Sign
Biased
exponent

Mantissa m=1.f
(the 1 is hidden)

32-bits:

64-bits:

8 bits, bias=127

11 bits, bias=1023

23+1 bits, IEEE single-precision format

52+1 bits, IEEE double-precision format

(-1)s * 1.f * 2e-BIAS

HPEC - Sept 2004 Northeastern University6

Why Parameterized FP ?

� Minimize the bitwidth of each signal in the datapath
– Make more parallel implementations possible
– Reduce the power dissipation

� Further acceleration
– Custom datapaths built in reconfigurable hardware using

either fixed-point or floating point arithmetic
– Hybrid representations supported through fixed-to-float and

float-to-fixed conversions

HPEC - Sept 2004 Northeastern University7

Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for
multispectral satellite images using the
floating point library

� Conclusions and future work

HPEC - Sept 2004 Northeastern University8

Parameterized FP Modules

� Arithmetic operation
– fp_add : floating point addition
– fp_sub : floating point subtraction
– fp_mul : floating point multiplication
– fp_div : floating point division
– fp_sqrt : floating point square root

� Format control
– denorm : introducing implied integer digit
– rnd_norm : rounding and normalizing

� Format conversion
– fix2float : converting from fixed point to floating point
– float2fix : converting from floating point to fixed point

HPEC - Sept 2004 Northeastern University9

What Makes Our Library Unique ?

� A superset of all floating point formats
– including IEEE standard format

� Parameterized for variable precision arithmetic
– Support custom floating point datapaths
– Support hybrid fixed and floating point implementations

� Support fully pipelining
– Synchronization signals

� Complete
– Separate normalization
– Rounding (“round to zero” and “round to nearest”)
– Some error handling

HPEC - Sept 2004 Northeastern University10

Generic Library Component

� Synchronization signals for pipelining
– READY and DONE

� Some error handling features
– EXCEPTION_IN and EXCEPTION_OUT

HPEC - Sept 2004 Northeastern University11

One Example
- Assembly of Modules

DENORM
exp_bits=8

man_bits=23

DENORM
exp_bits=8

man_bits=23

FP_ADD
exp_bits=8

m an_bits=24

RND_NORM
exp_bits=8

man_bits_in=25
man_bits_out=23

Norm alized IEEE single
precision values

Norm alized IEEE single
precision sum

IEEE single
precision adder

2 × denorm

+ 1 × fp_add
+ 1 × rnd_norm

= 1 × IEEE single
precision adder

HPEC - Sept 2004 Northeastern University12

Another Example
- Floating Point Multiplier

(-1)s1 * 1.f1 * 2e1-BIAS

(-1)s2 * 1.f2 * 2e2-BIAS

(-1)s1 xor s2 * (1.f1*1.f2) * 2(e1+e2-BIAS)-BIAS

x

HPEC - Sept 2004 Northeastern University13

Latency

4/5float2fix(unsigned/signed)

4/5fix2float(unsigned/signed)

14fp_sqrt

14fp_div

3fp_mul

4fp_add / fp_sub

2rnd_norm

0denorm

Latency
(clock cycles)

Module

Clock rate of each module is similar

HPEC - Sept 2004 Northeastern University14

Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for
multispectral satellite images using the
library

� Conclusions and future work

HPEC - Sept 2004 Northeastern University15

Algorithms for Division and Square
Root

� Division
– P. Hung, H. Fahmy, O. Mencer, and M. J. Flynn, “Fast division

algorithm with a small lookup table," Asilomar
Conference,1999

� Square Root
– M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand,

“Reciprocation, square root, inverse square root, and some
elementary functions using small multipliers," IEEE
Transactions on Computers, vol. 2, pp. 628-637, 2000

HPEC - Sept 2004 Northeastern University16

Why Choose These Algorithms?

� Both algorithms are simple and elegant
– Based on Taylor series
– Use small table-lookup method with small multipliers

� Very well suited to FPGA implementations
– BlockRAM, distributed memory, embedded multiplier
– Lead to a good tradeoff of area and latency

� Can be fully pipelined
– Clock speed similar to all other components

HPEC - Sept 2004 Northeastern University17

Division Algorithm

12
)12(

2
2

1
1 2...221 −

−−−− ++++= m
m xxxX

12
)12(

2
2

1
1 2...221 −

−−−− ++++= m
m yyyY

m
m

h yyyY −−− ++++= 2...221 2
2

1
1

12
)12(

1
)1(2...2 −

−−
+

+− ++= m
m

m
m

l yyY

Dividend X and divisor Y are 2m-bit fixed-point number [1,2)

Y is decomposed into higher order bit part and lower order bit
part , which are defined as

hY
lY

,where

}1,0{, ∈ii yx,where

l
m

h YY •> 2

∈

HPEC - Sept 2004 Northeastern University18

Division Algorithm – Continue

×)(lh YY −
2

1

hY

...)1(
2

2

−+−=
+

=
h

l

h

l

hlh Y

Y

Y

Y

Y

X

YY

X

Y

X

Using Taylor series

X≈ ×

Error less than ½ ulp

Two multipliers and one Table-Lookup are required

HPEC - Sept 2004 Northeastern University19

Division – Data Flow

Dividend X Divisor Y

Multiplier Lookup Table

Multiplier

Result

2m bits

2m bits2m bits

2m bits m bits

2m+2 bits 2m+2 bits

hY

21 hY

lh YY −

HPEC - Sept 2004 Northeastern University20

Square Root – Data Flow

∈

BMY ×=
Reduction

Evaluation

Postprocessing
Multiplier

Y

A

B=f(A)M

sqrt(Y)

A2 A3 A400...00

Reduce the input Y
to a very small number A

Compute first terms
of Taylor series

BMY ×=

HPEC - Sept 2004 Northeastern University21

Square Root – Reduction

M
Table

R
Table

Multiplier

M

Y

)(jY Y

j bits j bits

4j bits^

R j+1 bits

0...00 A2 A3 A4

1
^

−= RYA

4j bits

4j bits

4j bits

1

/1

1
^

)(
^

−×=
=

=

RYA

RM

YR j

HPEC - Sept 2004 Northeastern University22

Square Root - Evaluation

^2 Multiplier

A2 A3 A4

Multiple Operand
Signed Adder

A

B

A2*A2 A2*A3

A2*A2*A2

A2

A2 A2A3

0...00

4j bits

j bits j bitsj bits

Multiplier

2j bitsj bits

4j bits

63
2

5
32

42
2 16

1

4

1

8

12
1

1

zAzAAzA
A

AB

+−−+=

+=

...4
4

3
3

2
2 zAzAzAA ++=

HPEC - Sept 2004 Northeastern University23

Square Root – Post Processing

Multiplier

M

4j bits

BMY ×=

B

4j bits

Y

4j bits

HPEC - Sept 2004 Northeastern University24

Results Mapping to Hardware

� Designs specified in VHDL

� Mapped to Xilinx Virtex II FPGA (XC2V3000)
– System clock rates up to 300 MHz
– Density up to 8M system gates
– 14,336 slices
– 96 18x18 Embedded Multipliers
– 96 18Kb BlockRAM (1,728 Kb)
– 448 Kb Distributed Memory

� Currently targeting Annapolis Wildcard-II

HPEC - Sept 2004 Northeastern University25

Results - FP Divider on a XC2V3000

335 (2%)254 (1%)110 (1%)69 (1%)# of slices

7 (7%)1 (1%)1 (1%)1 (1%)# of BlockRAM

11010896124Throughput (million results/second)

12712910580Latency (ns)=clock period x # of clock cycles

14141010# of clock cycles to obtain final results

11010896124Maximum frequency (MHz)

99108Clock period (ns)

8 (8%)8 (8%)2 (2%)2 (2%)# of 18x18 Embedded Multiplier

32(8,23)24(6,17)16(4,11)8(2,5)Floating Point Format

The last column is the IEEE single precision floating point format

HPEC - Sept 2004 Northeastern University26

Results - FP Square Root on a XC2V3000

401 (2%)338 (2%)253 (1%)113 (1%)# of slices

3 (3%)3 (3%)3 (3%)3 (3%)# of BlockRAM

8694112103Throughput (million results/second)

15213810788Latency (ns)=clock period x # of clock cycles

1313129# of clock cycles to obtain final results

8694112103Maximum frequency (MHz)

1211910Clock period (ns)

9 (9%)9 (9%)5 (5%)4 (4%)# of 18x18 Embedded Multiplier

32(8,23)24(6,17)16(4,11)8(2,5)Floating Point Format

HPEC - Sept 2004 Northeastern University27

Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for multi-
spectral satellite images using the library

� Conclusions and future work

HPEC - Sept 2004 Northeastern University28

Application : K-means Clustering for
Multispectral Satellite Images

class 0

class 1

class 2
class 3

class 4
Every pixel Xij is
assigned a class c j

Image spectral data
k

=
0

to
 K

i = 0 to I

j =
 0

 to
 J

pixel X ij

spectral component ‘k’

Clustered image

0 1 2 3 4

HPEC - Sept 2004 Northeastern University29

K-means – Iterative Algorithm

� Each cluster has a center (mean value)
– Initialized on host
– Initialization done once for complete image processing

� Cluster assignment
– Distance (Manhattan norm) of each pixel and cluster center

� Accumulation of pixel value of each cluster
� Mean update via dividing the accumulator value by

number of pixels
� Division step now executed on-chip with

fp_divide to improve performance

HPEC - Sept 2004 Northeastern University30

K-means Clustering – Functional Units

Subtraction

Addition

Comparison

DATAPATH

Abs. Value

Pixel
Data

V
al

id
ity

Cluster
Centers

Memory
Acknowledge

Data
Valid

Datapath
Pixel
Shift

Accumulators Cluster
Assignment

Mean Update
Division

Pixel
Data

HPEC - Sept 2004 Northeastern University31

Outline

� Project overview

� Library hardware modules
� Floating point divider and square root

� K-means clustering application for
multispectral satellite images using the
library

� Conclusions and future work

HPEC - Sept 2004 Northeastern University32

Conclusion

� A Library of fully pipelined and parameterized
hardware modules for floating point arithmetic

� Flexibility in forming custom floating point formats

� New module fp_div and fp_sqrt have small area and
low latency, are easily pipelined

� K-means clustering algorithm applied to multispectral
satellite images makes use of fp_div

HPEC - Sept 2004 Northeastern University33

Future Work

� More applications using
– fp_div and fp_sqrt

� New library modules
– ACC, MAC, INV_SQRT

� Use floating point lib to implement floating point
coprocessor on FPGA with embedded processor

HPEC - Sept 2004 Northeastern University34

For Additional Information

Rapid Prototyping Laboratory
Northeastern University, Boston MA
http://www.ece.neu.edu/groups/rpl/

aconti , xjwang , mel @ece.neu.edu

	Presentation:
	Abstract:
	Agenda:

